Hashing and AMQs for large-scale
sequence search



Facing a New Challenge

The Sequence Read Archive (SRA) ..
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is not searchable by sequence* ! (Yes, | know!)

This renders what is otherwise an immensely valuable public resource largely inert

Q: What it | find e.g., a new disease-related gene, and want to see if it appeared
in other experiments?

A: (basically) Too bad!
*there is an SRA BLAST, but functionality is limited



Facing a New Challenge

Contrast this situation with the task of searching assembled, curated genomes,
For which we have an excellent tool; BLAST.

_J blastn { blastp @ blastx | tblastn | tblastx

Enter Query Sequence SEASIN

Enter accession number(s), gi(s), or FASTA sequence(s) & Clear Query subrange &
TGAAAAAGGGTAACCTCAAAGCTAAAAAGCCCAAGAAGGGGAAGCCCCATTGCAGCCGCAAC E
CCTGTCCTTGTCAGAGGAATTGGCAGGTATTCCCGATC rom

To

Sequences producing significant alignments:
Or, upload file i )
P Choose File ' No file chosen o, Select: All None Selected:0

Job Title

Enter a descriptive title for your BLAST search &)

| Align two or more sequences &

Essentially, the “Google of genomics”:

i1 Alignments

Eukaryotic synthetic construct chromosome 18

PREDICTED: Pan paniscus 60S ribosomal protein L6-like (LOC100976413), mRNA

PREDICTED: Pan paniscus 60S ribosomal protein L6 pseudogene (LOC100995849), misc_RNA

PREDICTED: Pan paniscus 60S ribosomal protein L6 (LOC100995836), mRNA

PREDICTED: Pan troglodytes 60S ribosomal protein L6 pseudogene (LOC737972), misc_ RNA

PREDICTED: Pan troglodytes ribosomal protein L6 (RPL6), transcript variant X8, mRNA

PREDICTED: Pan troglodytes ribosomal protein L6 (RPL6), transcript variant X7, mRNA

Human ORFeome Gateway entry vector pENTR223-RPL6, complete sequence

PREDICTED: Gorilla gorilla gorilla ribosomal protein L6 (RPL6), transcript variant X5, mRNA

Basic local alignment search tool

SF Altschul, W Gish, W Miller, EW Myers... - Journal of molecular ..., 1990 - Elsevier Paperpile

A new approach to rapid sequence comparison, basic local alignment search tool (BLAST),
directly approximates alignments that optimize a measure of local similarity, the maximal
segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP ...

¢ 99 CCited by, 76248) Related articles Web of Science: 52272 Import into BibTeX

However, even the scale of reference databases requires algorithmic innovations:

COMMENTARY
Compressive genomics

Po-Ru Loh, Michael Baym & Bonnie Berger

3 Algorithms that compute directly on compressed genomic data allow analyses to keep pace with data generation.
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Fast search of thousands of short-read sequencing
experiments.

SBT introduced by Solomon and Kingsford.

Nature biotechnology. 2016 doi: 10.1038/nbt.3442

Problem:

The vast repository of publicly-available data (e.g.,
the SRA) is essentially unsearchable by sequence.
Current solutions (BLAST, STAR) too slow. What if |

find a novel txp and want to search the SRA for it?
Solution:

A hierarchical index of k-mer content represented
approximately via Bloom filters. Returns “yes/no”
results for individual experiments — “yes” results

can be searched using more traditional methods.



The bloom filter



Bloom Fllters

Originally designed to answer probabilistic membership
queries:

s element e In my set 57?7
f yes, always say yes

If no, say no with large probability

False positives can happen; false negatives cannot.



oSBT

An SBT Is a binary tree of bloom filters, where leaves
represent the k-mer set of a single sample.

Bloom filter: &

u L] 6
SRA 00005
H BN | I [ ]
SRA 00003 SRA 00007 SRA 00004 SRA|00001 SRA|00008
— v v
SRA 00002 SRA|00006 Analysis Analysis
4
Analysis

Each node contains a bloom filter that holds the kmers present in the sequencing experiments under it. 8 is the fraction of kmers required to be found at each
node in order to continue to search its subtree. The SBT returns the experiments that likely contain the query sequence on which further analysis can be
performed.

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.



SBT Operations

Construction (repeatedly insert samples s):

Let b(s) be the bloom filter of sample s

Use b(s) to walk from the root of T to the leaves

-0Or a node u:

f uhas a single child, insert b(s) as the other child

f uhas 2 children recurse into child with < hamming dist to b(s)

f uis a leaf (an experiment), create a parent with filter b(u) U b(s)




SBT Operations

Query (given collection of k-mers Kq, parameter 0):

-0or a node u:

Hash elements of Kq and check if at least 6 | Kq| k-mers exist
If not then this sub-tree cannot B8-match our query

Else continue searching both children recursively

The implementation allows each query k-mer to be given a "weight”
" Importance.

O



SBT Operations

Consider this single k-mer query with 6 = 1
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SBT Operations

Consider this single k-mer query with 6 = 1

Compare to children\ —
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SBT Operations

Consider this single k-mer query with 6 = 1

Compare to children
Early stop in this
( / Subtree

Early stop in this
Subtree




SBT Operations

Consider this single k-mer query with 6 = 1

Early stop in this
/ Subtree

Compare to children

Early stop in this
Subtree




SBT Operations

Query (given collection of k-mers Kq, parameter 0):

Thm 2.
Let g be a query string containing #Z distinct k-mers. If we

treat the k-mers of g as being independent, the probability
that > | 67| false-positive k-mers appear in a filter U with

FPR € is
167 | Y | o
EEOIGEIEY
/' i=0
Prob of > |07| false positives ‘
is simply the difference from 1 Prob of < |¢7| false positives.

Because of assumed indolence of q, these are
independent Binomial trials with “success” rate &



SBT Tricks

High false positive rate lets filters be small (& use only a single hash)

Insert in leaves only k-mers occurring > ¢ times, set

as follows: count(s;) =1 if s;is 300 MB or less, count(s;) = 3 for files of size 300-500 MB,
count(s;) = 10 for files of size 500 MB—-1 GB, count(s;) = 20 for files between 1 GB and 3 GB, and
count(s;) = 50 for files > 3 GB or larger FASTA files.

Store Bloom filter as RRR-compressed bit vectors. Greatly reduces
storage space. Individual bits can be accessed without
decompression in O(log m) time.




SBT Speed

Average search time for a single transcript over 2,652 RNA-seq experiments in the SRA for
human blood, breast and brain tissues
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SBT Speed
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SBT STAR

Supplementary Figure 2
Comparison with STAR on batched queries.

STAR was run using an index built from 100 batch-queries and a size 11 pre-index string. Both SBT and STAR were run using one
thread and SBT was limited to a single filter in RAM. SBT is an estimated 4056 times faster than STAR under these conditions. STAR
times are estimated from extrapolating from querying 100 random SRR files.



SBT Accuracy
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Solid lines represent mean true-positive and false-positive rates, dashed lines represent the median rates on the same experiments. Relaxing 6 leads to a
higher sensitivity at the cost of specificity. In more than half of all queries, 100% of true-positive hits can be found with 8 as high as 0.9.



T Efficiency

4500
4000 o
= Y LT
i 8 *%
® °>
- 3500 . oo’ W
L @
.g ® ® 2] @
‘o 3000}
> ° .
U) __________ .__'_. _______________________ g
Q 2500 N
g 5 8 o°
D
— 2000 o 00
._5 2] ® e @
@
]
a—j 1500 .'.
O
= 1000l % © ﬂ
=3 K
Z ol
500
200 400 600 800 1000 1200 1400 1600
Number of Leaf Hits
Supplementary Figure 5

Total number of Sequence Bloom Tree nodes visited as a function of the number of leaf hits when querying 100 random human

transcripts in the Low query set.

Number of nodes includes both internal and leaf nodes of the SBT. Each point represents a single query. When a query is found in
many of the leaves, the query must also visit a nearly equal number of internal tree nodes, and so the tree structure would not provide
any benefit over merely searching all the leaf filters directly. On the other hand, when the query is found in only a few leaves, the total
number of nodes visited can be significantly smaller than the number of leaves. For the SBT built here, we find that for queries that are
found in 600 or fewer leaves, the tree structure and internal nodes result in an improvement of overall efficiency by visiting fewer than
2652 nodes. A naive approach that did not use the tree would require querying 2652 leaf filters for all queries (denoted by dashed line).

Approximately half of the randomly selected queries known to be expressed in the included experiments fall below this threshold.



SBT Efficiency
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Supplementary Figure 8
Time for querying all known human transcripts.

Total times (single-threaded) for querying all 214,293 human transcripts (in batch mode) against all publicly available blood, breast, and
brain RNA-seq experiments in the SRA for 8 = 0.7, 0.8, 0.9 as well as the extrapolated time to run Sailfish on the full dataset. Sailfish is
significantly faster than nearly all other algorithms for RNA-seq quantification.



Two improved SBT1-related papers (RECOMB 2017)

Improved Search of Large Transcriptomic Sequencing Databases
Using Split Sequence Bloom Trees

Brad Solomon' and Carl Kingsford*!

AllSome Sequence Bloom Trees

Chen Sun*!, Robert S. Harris*? Rayan Chikhi®, and Paul Medvedev'l:4°



Both share a core 1gea

All Some SBT:

Bai(u) = Bn(u) \ Bn(parent(u))
Bsome(u) = Bu(u) \ Bn(u)

oresent in all leaves below u,
but not In u's parent

oresent in some (but not) all
leaves below U

Split sequence bloom tree (SSBT):

Store 2 filters at each node, rsim and rrem

rsim = [ )ieq bi oresent in all leaves below r

Prem = Ui— O(b — rsim) Dresent in some (but not) all
leaves below r



Both share a core 1gea

This allows an immediate optimization

f rsim or Ban match the query, we can add all leaves
below r/u without explicitly continuing the search

The details differ

SSBT explicitly removed redundant elements

(a) Uncompressed SSBT
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(b) Compressed SSBT
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Both share a core 1dea
The detalls differ

SBT-AllSome don'’t explicitly remove these bits, but
they optimize tree construction to put similar filters
together (agglomerative clustering)
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SSBTs take longer to build than the original
but require considerably less memory to store.

Data Index BFT SBT SSBT
Build Time (Min) 195 6 19
Compression Time (Min) - 6.5 17
Total Time (Min) 195 12.5 36

Table 4: Build and compression times for SBT, SSBT, and BFT constructed from a 50 experiment set. As
SBT and SSBT were designed to be queried from a compressed state, we compare the time to build and
compress against BFT’s time to build.

Data Index SBT Split SBT
Build Time 18 Hr 78 Hr
Compression Time 17 Hr 19 Hr

Uncompressed Size 1295 GB 1853 GB
Compressed Size 200GB  39.7GB

Table 2: Build statistics for SBT and SSBT constructed from a 2652 experiment set. The sizes are the total
disk space required to store a bloom tree before or after compression. In SSBT’s case, this compression
includes the removal of non-informative bits.

Data Index BFT SBT SSBT
Build Peak RAM (GB) 23 21.5 15.6
Compress Peak RAM (GB) - 242 16.2
Uncompressed Size (GB) 9.2 24 35
Compressed Size (GB) - 39 0.94

Table 3: Build and compression peak RAM loads and on-disk storage costs for SBT, SSBT, and BFT
constructed from a 50 experiment set. BFT does not have a built-in compression tool and cannot be
queried when compressed. For these reasons, the uncompressed BFT is compared against the compressed

SBT/SSBT.



SSBTs are also faster to query than SBTs

Index TPM >100 TPM >500 TPM >1000

BFT 75 Sec (11.8 GB) 75Sec (11.8 GB) 75 Sec (11.8 GB)
SBT 19 Sec (2.9 GB) 21 Sec (3.1 GB) 22 Sec (3.2 GB)
SSBT 5.8 Sec (0.64 GB) 6.2 Sec (0.65 GB) 6.3 Sec (0.66 GB)

Table 5: Comparison in query timing (and average peak memory) between SBT, SSBT, and BFT indices for
50 experiments.

Index TPM >100 TPM >500 TPM >1000

SBT 19.7 Min 20.7 Min 20 Min
SSBT 3.7 Min 3.8 Min 3.6 Min

Table 6: Comparison in query timing between SBT and SSBT for 2652 experiments.

Query Time: 0=0.7 0=0.8 60=0.9

SBT 20Min  19Min 17 Min
SSBT 3.7Min 3.5Min 3.2 Min
RAM SSBT 31 Sec 29 Sec 26 Sec

Table 7: Comparison of query times using different thresholds 6 for SBT and SSBT using the set of data at
TPM 100.



AllSome SBTs are tfaster to construct than SBT (called SBT-

SK here), but not much smaller.

SBT-SK SBT-ALSO
construction of tree topology (i.e. clustering) N/A 27m
construction of internal nodes 56h 54m 26h 3m
temporary disk space 1,235 GB 2,469 GB
final disk space 200 GB 177 GB

Table 1. Construction time and space. Times shown are wall-clock times. A single thread was used. Note the SBT-SK
tree that was constructed for the purposes of this Table differs from the tree used in [36] and in our other experiments
because the insertion order during construction was not the same as in [36] (because it was not described there).
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Fig. 3. Number of nodes examined per query for SBT-SK, SBT-ALSO, as well two intermediate SBT's. A set of
1,000 transcripts were chosen at random from Gencode set, and each one queried against the four different trees. A
dot represents a query and shows the number of matches in the database (x-axis) compared to the number of nodes
that had to be loaded from disk and examined during the search (y-axis). For each tree (color), we interpolated a
curve to show the pattern. The dashed horizontal line represents the hypothetical algorithm of simply checking if
the query f-matches against each of the database entries, one-by-one. For 6, we used the default value in the SBT

software (6 = 0.9).

They examine fewer
nodes than the original SBT too



Which makes them faster to query than the original
SBT as well.

SBT-SK SBT-SK+CLUST SBT-ALSO
1 query Im 11s / 301 MB 56s / 299 MB 34s / 301 MB
10 queries 4m 4s / 305 MB 3m 17s / 304 MB 2m 4s / 313 MB

100 queries
1,000 queries
198,074 queries

7m 44s / 315 MB
25m 31s / 420 MB
3081m 42s / 22 GB

6m 31s / 317 MB
17m 22s / 418 MB

4m 44s / 353 MB
8m 23s / 639 MB
462m 39s / 63 GB

Table 2. Query wall-clock run times and maximum memory usage, for batches of different sizes. For the batch of
1,000 queries, we used the same 1,000 queries as in Figure 3. For the batch of 100 queries, we generated three replicate
sets, where each set contains 100 randomly sampled transcripts without replacement from the 1,000 queries set. For
the batch of 10 queries, we generated 10 replicate sets by partitioning one of the 100 query sets into 10 sets of 10
queries. For the batch of 1 query, we generated 50 replicate sets by sampling 50 random queries from Gencode set.
The shown running times are the averages of these replicates. A dash indicates we did not run the experiment. For

8, we used the default value in the SBT software (6 = 0.9).

SBT-SK | SBT-ALSO

regular alg | regular alg | large exact alg large heuristic alg
query time 1397m 18s 195m 33s 10m 35s 8m 32s
query memory 2.3 GB 4.7 GB 1.3 GB 1.2 GB

Table 3. Performance of different trees and query algorithms on a large query. We show the performance of SBT-
SK and three query algorithms using SBT-ALSO compressed with ROAR: the regular algorithm, the large exact
algorithm, and the large heuristic algorithm. We show the wall-clock run time and maximum RAM usage. We used
6 = 0.8 for this experiment. The ROAR compressed tree was 190 GB (7.3% larger than the RRR tree).



Fven further improvements of SB1-like ideas

Table 1. File sizes (in GiB) and build times

Bioinformatics, 36(3), 2020, 721-727
doi: 10.1093/bioinformatics/btz662
Advance Access Publication Date: 22 August 2019

HowDEg-SBT ALLSOME-SBT SSBT

Original Paper ConStrlICtion tlme (h) 9 25 57
Intermediate space 602 602 602
Index size 14 142 23

Sequence analysis
Improved representation of sequence bloom trees

Robert S. Harris' and Paul Medvedev?®>**

'Department of Biology, 2Department of Computer Science and Engineering, >Department of Biochemistry and Molecular Biology and
*Center for Computational Biology and Bioinformatics, The Pennsylvania State University, University Park, PA 16801, USA

Notes: The intermediate space refers to the initial experiment BFs. The con-
struction time is the time to build the index from the BFs and does not include
k-mer counting. All times shown are on one processor.

Table 2. Query times (s)

*To whom correspondence should be addressed.
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''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ' Single 5.4 36.7 29.4
Ten 44.5 353.7 159.6
Hundred 171.3 817.8 400.8
Thousand 719.7 1168.6 3509.4

Notes: Values shown are the median over all the replicates. The cache was
cleared prior to each run.
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