
Hashing and AMQs for large-scale
sequence search

Facing a New Challenge
The Sequence Read Archive (SRA) …

is not searchable by sequence* ! (Yes, I know!)
This renders what is otherwise an immensely valuable public resource largely inert

Q: What if I find e.g., a new disease-related gene, and want to see if it appeared
in other experiments?
A: (basically) Too bad!

* there is an SRA BLAST, but functionality is limited

Terabyte

Petabyte

Facing a New Challenge
Contrast this situation with the task of searching assembled, curated genomes,
For which we have an excellent tool; BLAST.

Essentially, the “Google of genomics”:

However, even the scale of reference databases requires algorithmic innovations:

Fast search of thousands of short-read sequencing
experiments.

Nature biotechnology. 2016 doi: 10.1038/nbt.3442

Solomon and Kingsford. SBT introduced by

Problem:

Solution:

The vast repository of publicly-available data (e.g.,
the SRA) is essentially unsearchable by sequence.
Current solutions (BLAST, STAR) too slow. What if I
find a novel txp and want to search the SRA for it?

A hierarchical index of k-mer content represented
approximately via Bloom filters. Returns “yes/no”
results for individual experiments → “yes” results

can be searched using more traditional methods.

The bloom filter

Bloom Filters
Originally designed to answer probabilistic membership
queries:

Is element e in my set S?

If yes, always say yes

If no, say no with large probability

False positives can happen; false negatives cannot.

SBT
An SBT is a binary tree of bloom filters, where leaves
represent the k-mer set of a single sample.

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.

SBT Operations

Construction (repeatedly insert samples s):

Let b(s) be the bloom filter of sample s

Use b(s) to walk from the root of T to the leaves
For a node u:

If u has a single child, insert b(s) as the other child
If u has 2 children recurse into child with < hamming dist to b(s)
If u is a leaf (an experiment), create a parent with filter b(u) U b(s)

SBT Operations
Query (given collection of k-mers Kq, parameter θ):

For a node u:
Hash elements of Kq and check if at least θ | Kq| k-mers exist
If not then this sub-tree cannot θ-match our query
Else continue searching both children recursively

The implementation allows each query k-mer to be given a “weight”
or importance.

SBT Operations
Consider this single k-mer query with θ = 1

SBT Operations
Consider this single k-mer query with θ = 1

Compare to children

SBT Operations
Consider this single k-mer query with θ = 1

Compare to children
Early stop in this

Subtree

Early stop in this
Subtree

SBT Operations
Consider this single k-mer query with θ = 1

Compare to children
Early stop in this

Subtree

Early stop in this
Subtree

SBT Operations
Query (given collection of k-mers Kq, parameter θ):

1 −
⌊θℓ⌋

∑
i=0

(ℓ
i)ξi (1 − ξ)ℓ−i

Thm 2. 
Let q be a query string containing 𝓁 distinct k-mers. If we  
treat the k-mers of q as being independent, the probability 
that > ⌊θ𝓁⌋ false-positive k-mers appear in a filter U with 
FPR ξ is

Prob of ≤ false positives.⌊θℓ⌋

Because of assumed indolence of q, these are  
independent Binomial trials with “success” rate ξ

Prob of > false positives 
is simply the difference from 1

⌊θℓ⌋

SBT Tricks
High false positive rate lets filters be small (& use only a single hash)

Insert in leaves only k-mers occurring > c times, set

Store Bloom filter as RRR-compressed bit vectors. Greatly reduces
storage space. Individual bits can be accessed without
decompression in O(log m) time.

SBT Speed
Average search time for a single transcript over 2,652 RNA-seq experiments in the SRA for

human blood, breast and brain tissues

SBT Speed

SBT Accuracy

SBT Efficiency

SBT Efficiency

Two improved SBT-related papers (RECOMB 2017)

Both share a core idea

Split sequence bloom tree (SSBT):

Store 2 filters at each node, rsim and rrem

present in all leaves below r
present in some (but not) all

leaves below r

All Some SBT:
present in all leaves below u,

but not in u’s parent
present in some (but not) all

leaves below u

Both share a core idea
This allows an immediate optimization

if rsim or Ball match the query, we can add all leaves
below r/u without explicitly continuing the search

The details differ
SSBT explicitly removed redundant elements

Both share a core idea
The details differ

SBT-AllSome don’t explicitly remove these bits, but
they optimize tree construction to put similar filters
together (agglomerative clustering)

SSBTs take longer to build than the original
but require considerably less memory to store.

SSBTs are also faster to query than SBTs

AllSome SBTs are faster to construct than SBT (called SBT-
SK here), but not much smaller.

They examine fewer
nodes than the original SBT too

Which makes them faster to query than the original
SBT as well.

Even further improvements of SBT-like ideas

HowDe (How-Determined) SBT

